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SYNOPSIS 

The effects of polydispersity on the dielectric normal-mode relaxation of entangled, cis- 
polyisoprene melts are considered. We use a linear mixing rule and reptation theory in 
conjunction with a theoretical molecular weight distribution ( MWD ) of variable breadth 
to predict loss spectra of model cis-polyisoprene melts. The half-widths of the predicted 
spectra show a nonlinear dependence on polydispersity index, with the greatest sensitivity 
near the monodisperse limit. The calculations are in agreement with literature data on 
narrowly dispersed samples. 0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

The study of dielectric normal-mode (NM) relax- 
ation in entangled melts of cis-polyisoprene (cis-PI) 
offers the unique opportunity to probe the effects of 
polydispersity on the relaxation of nearly unper- 
turbed linear chains. The strong directional corre- 
lation of the backbone components of the segmental 
dipoles endows the cis-PI chain with a nonzero net 
dipole moment proportional to its end-to-end vector 
(therefore, cis-PI is a type A polymer as classified 
by others’-4). Measurable fluctuations in material 
polarization are thus linked to NM relaxation that, 
in entangled systems, occurs by r e p t a t i ~ n . ~  NM re- 
laxation emerges dielectrically as a low frequency 
loss peak with magnitude, shape, and position 
strongly dependent on the sample molecular weight 
distribution (MWD ) . A high frequency “segmental” 
loss-peak is also This peak, however, is 
insensitive to molecular weight characteristics of the 
sample. It originates from the fast fluctuation of the 
components of the segmental dipoles perpendicular 
to the chain contour, which lack long-range corre- 
lation. 

The dielectric behavior of &-PI has been exten- 
sively ~ h a r a c t e r i z e d . ~ ~ ~ ~ ~ - ~  The effects of polydisper- 
sity on the NM contribution to the dielectric loss of 

~~ 

* To whom correspondence should be addressed. 
Journal of Applied Polymer Science, Vol. 53, 1599-1604 (1994) 
0 1994 John Wiley & Sons, Inc. CCC 002 1 -8995/94/12 1599-06 

entangled melts have been considered by Imanishi 
et al.9 and lately by Fodor and Hill.’’ Polydispersity 
broadens and lowers the NM loss spectra so that to 
first order, peaks’ half-widths can be used as a mea- 
sure of the breadth of the MWD. Imanishi and 
coworkers9 compared the half-widths of loss spectra 
of &-PI samples with varying degree of polydisper- 
sity, as quantified by the ratio M,/Mn, M, and Mn 
being the weight and number average molecular 
weights, respectively. The half-widths below and 
above the peak frequency (which would differ from 
each other even for a monodisperse sample9*”) were 
considered separately. Linear extrapolation of the 
low-frequency half-widths to M,/Mn = 1 led to an 
intercept that agreed with reptation; but on the high 
frequency side the intercept was about 10% higher 
than expected, raising concern about the legitimacy 
of the reptation model. 

The existence of a discrepancy in Imanishi’s data 
was recently questioned by us.10 We argued that the 
inconsistency could be explained in terms of 1 ) un- 
accounted experimental scatter (which would have 
made extrapolation uncertain within 10%) and 2)  
failure of the linearity assumption (which was theo- 
retically unjustified). We did not provide any evi- 
dence to support the latter statement, however. 
Clarification of this issue remains important if we 
are to lend credence to reptation theory. 

We have recently shown that the dielectric re- 
sponse of moderately polydisperse cis-PI melts above 
entanglement can be quantitatively reproduced from 
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the known MWD with the autocorrelation function 
of reptation and a linear mixing rule." Therefore, 
loss spectra of model systems with assigned MWD 
can now be predicted and the results compared to 
the data of Imanishi et al.' As will be shown, the 
calculations support our previous claims, indicating 
that reptation indeed works. We also test the legit- 
imacy of using a single polydispersity index to fully 
characterize a polydisperse system. MWDs with dif- 
ferent shapes, but identical M, and M,, can produce 
loss spectra with widely different shapes and peak- 
frequency values. The relaxation-time spectra of 
such data would clearly show substantial structural 
differences, which could be erroneously attributed 
to inadequacies in the theoretical treatment. 

Below we briefly review the set of equations and 
assumptions necessary for the predictions. Discus- 
sion of the results, comparison with experiments, 
and concluding remarks follow. 

THEORY 

The NM contribution to the dielectric loss for a type 
A polymer is related to the autocorrelation function 
of the end-to-end vector, ?Tr( t ) ,  as follows'o 

where elf is the dielectric loss; w the frequency; ( c 0  

- E , )  the dielectric strength (dependent on tem- 
perature, but not on molecular weight lo) ; and z a 
dummy variable of integration. 

The autocorrelation function of a polydisperse 
mixture is obtained by linearly weighing the relax- 
ation functions of the individual species " 7 " :  

p odd 

where $'( t/Ti) , 4i , and 7i are the relaxation function 
as predicted by reptation, volume fraction, and re- 
laxation time of species i,  respectively. The molec- 
ular weight dependence of the latter is of the power- 
law type, as indicated by experiments: 

where, 7, and M,  are reference relaxation time and 
molecular weight, respectively and, for cis-PI, v 

The integral in Eq. ( 1) with Eqs. ( 2 )  and ( 3 )  as 
kernels can be easily carried out analytically, giving: 

- - 3.70.3,8-10,12 

where 

b ( w i )  = S(z/w)cos(z) dz  

p:odd 

In summing the series in Eq. (6)  care must be taken 
to ensure that an adequate number of terms are in- 
cluded." We have recently shown" that Eqs. ( 4 ) -  
(6)  can accurately predict the NM spectra of cis-PI 
melts above entanglement from the known MWD. 

To systematically examine the effects of varying 
sample MWD we use two theoretical distributions. 
The Schultz di~tribution'~ gives a fair description 
of typical samples with narrow MWD: 

Here q$ and Mi are the weight fraction and molecular 
weight of species i, respectively; Mn the number av- 
erage molecular weight; (M,/M,) = ( a  + l ) / u ;  
I'( X )  the gamma function; and Mo the monomer 
molecular weight, equal to 68 g/mol for &-PI. 

We also use a uniform, or "box" distribution 
(which is of course purely theoretical, but simple) : 

Comparison of loss spectra calculated with Eqs. ( 7 )  
and (8) allows us to examine the effects of the shape 
of the MWD. 

The above equations can also be recast in terms 
of a continuous MWD, f ( M ) :  

dW 
f (  M ) d  In M = - Wtot 



ENTANGLED CIS-PI MELTS 1601 

0. 

-2.0 -1 .o 0.0 1 .o 2.0 3.0 4.0 

1% 

Figure 1 Predicted dielectric loss spectra from a Schultz molecular weight distributions 
with M , / M ,  ranging from 1.0 to 1.5 in increments of 0.05, as determined by Eq. ( 7 ) .  The 
spectra have been normalized by their peak values and the frequency has been reduced by 
T,, as discussed in the text. 

where d W /  W,,, is the weight fraction of species with 
molecular weight between M and M + dM.  For suf- 
ficiently fine discretization, the discrete and contin- 
uous distributions are related as follows: 

Relations linking Ml and M2 to M ,  and M,, for 
the box distribution [ Eq. (8) ] can easily be calcu- 
lated in the continuum limit: 

It is interesting to examine the consequences of 
choosing a molecular weight distribution of the form 
f ( a ,  MIM,,)  (such as the Schultz distribution), 
where a is a parameter related to the polydispersity 
index. Equations ( 4 )  - ( 6 )  can then be recast as fol- 
lows: 

where 

It is clear from Eqs. ( 13) - ( 15) that, for a given 
functionality f ( a ,  X ) and a fixed value of u [ Eq. 
(4) 1 ,  a change in M,, (or M,) at  a fixed polydisper- 
sity will cause the loss spectrum to shift immutably 
either to the right (decreasing M,,) or to the left 
(increasing M,,) along the log ( w )  axis. Loss spectra 
of samples with identical polydispersity indices will 
have then identical shapes, but different positions 
along the frequency axis. Concomitantly, the dis- 
tributions of relaxation times will be identical, but 
shifted. Only in such an idealized situation would a 
comparison between relaxation times spectra of dif- 
ferent samples be truly legitimate. 

RESULTS AND DISCUSSION 

c”(wr*,  a ,  u )  = ( c o  - c,)  
Comparisons between experimental loss spectra of 
&-PI with the predictions of Eqs. ( 4 )  - ( 6 )  and the 
measured MWD from size exclusion chromatogra- 

f ( a ,  x o( w7* x U) d ln x ( 13 ) 
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Figure 2 Half-widths, A +  and A - ,  plotted against Mw/  
M,,. Open circles are data by Imanishi et al.’ Solid line: 
Schultz distribution. Dotted line: “box” distribution (see 
text for details). 

phy are reported elsewhere.” Figure 1 shows pre- 
dicted loss spectra of increasing polydispersity ob- 
tained with the Schultz distribution [ Eq. (7)  1.  Pa- 
rameter a was varied in the range 1.00 I M,/M,, 
I 1.50 in increments of 0.05. Broadening of the dis- 
tribution decreases the peak values of the spectra, 
so that all curves were normalized by their peaks 
and plotted against the reduced frequency wr,, r, 
being the relaxation time corresponding to M,. Note 
the slight inflection on the high-frequency side of 
the monodisperse spectrum and how it quickly dis- 
appears with only a slight increase in polydispersity. 
In approaching the monodisperse limit the curves 
become extremely sensitive to  small degrees of poly- 
dispersity. Therefore, comparison of monodisperse 
theories with experimental data of samples with 
polydispersity as low as 1.1 (often assumed to  be 
monodisperse) should be treated with caution. 

As proposed by Imanishi et al.’ the half-width of 
the spectra, A, can be used as a measure of polydis- 
persity. The half width is defined as the decimal 
logarithm of the ratio of the frequencies where the 
spectrum falls to 50% of its peak value. Because of 
the intrinsic asymmetry of the loss curves, a more 
detailed description of spectral broadness can be 
obtained by separating the low- ( A - )  from the high- 
frequency (A’) contributions to A relative to the 
peak frequency. Figure 2 shows the predicted A -  

0.001 I 
- - -  Schultz 

“box” 

(Mw/M,,) = 1.5 

Figure 3 
values of M,., and M,,. 

Schultz (dashed line) and “box” (solid line) distributions having identical 
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Figure 4 
distributions shown in Figure 3. The spectra have been normalized as in Figure 1. 

Loss spectra predicted from the “box” (solid line) and a Schultz (dashed line) 

and A +  (determined from Fig. 1 ) plotted against 
M w /  M,. Superposed on the predictions are the data 
of Imanishi et al.’ Detailed quantitative agreement 
between theory and experiments was not expected, 
due to anticipated differences between the assumed 
and the actual (unknown) molecular weight distri- 
butions. The experimental trends are captured by 
the theory, however. The predictions clearly show 
that linear extrapolation of the A’ data to M,/Mn 
= 1 can lead to inaccurate estimates of A +  in the 
monodisperse limit. ( Note, especially, the pro- 
nounced change in the trend below about M,/Mn 
= 1.05.) This justifies the discrepancy reported by 
Imanishi et al.’ 

The use of a single parameter to characterize a 
polydisperse system may be questionable, even for 
narrow molecular weight distributions. Distributions 
with identical M,  and M ,  could, in fact, be highly 
dissimilar, leading to marked differences in observ- 
able properties for nominally identical samples. 
Figure 3 shows a Schultz distribution [ Eq. ( 7 )  ] and 
a “box” [ Eq. (8) ] distribution both characterized 
by M ,  = 61.2 kg/mol and M w / M n  = 1.50. The loss 
spectra for each case are shown in Figure 4. The 
spectra have been normalized by their peak values 
and plotted against w7,. The half-widths calculated 
from the box distribution are also shown in Figure 
2. The trends are similar to the Schultz case and, 

interestingly, although A +  and A -  individually show 
appreciable variation with the type of distribution, 
the global half-widths A = l A + l  + ( A - (  do not, 
being nearly identical to within a few percent. It can 
be seen that the A -  predictions lie above the exper- 
imental data. This is an indication that the exper- 
imental MWDs were much steeper on the high mo- 
lecular weight side than the equivalent Schultz dis- 
tribution that we have used. 

CONCLUSION 

We have analyzed the effects of small degrees of 
polydispersity and the shape of the molecular weight 
distribution on the dielectric loss spectrum. Predic- 
tions with distributions of variable breadth captured 
the trends in the data of Imanishi and coworkers’ 
on &-PI samples of narrow MWD. In particular, 
the previously reported discrepancy between exper- 
imental half-widths and the monodisperse predic- 
tion of reptation was shown to originate in an im- 
proper linear extrapolation procedure, inadequate 
to capture the extreme sensitivity of the loss spectra 
to polydispersity near the monodisperse limit. 
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